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Diffraction

Light does not
always travel in a
straight line.

It tends to bend
around objects.
This tendency is
called diffraction.

Any wave will do
this, including
matter waves and
acoustic waves.
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Why it’s hard to see diffraction

Diffraction tends to cause ripples at edges.  But a point source is
required to see this effect.  A large source masks them.

Rays from a
point source
yield a perfect
shadow of the
hole.  Rays from
other regions
blur the shadow.

Screen
with hole

Example: a large source (like the sun) casts blurry shadows,
masking the diffraction ripples.



Diffraction of ocean water waves

Ocean waves passing through slits in Tel Aviv, Israel

Diffraction occurs for all waves, whatever the phenomenon.



Diffraction of a
wave by a slit

Whether waves in water or
electromagnetic radiation in air,
passage through a slit yields a
diffraction pattern that will
appear more dramatic as the
size of the slit approaches the
wavelength of the wave.
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Light
passing
by edge

Diffraction
by an Edge

Electrons
passing by

an edge
(Mg0 crystal)
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Even without
a small slit,
diffraction
can be
strong.

Simple
propagation
past an edge
yields an
unintuitive
irradiance
pattern.



Radio waves diffract around mountains.

When the
wavelength is a

km long, a
mountain peak is

a very sharp
edge!

Another effect
that occurs is
scattering, so

diffraction’s role
is not obvious.



Diffraction Geometry
We wish to find the light electric field after a screen with a hole in it.
This is a very general problem with far-reaching applications.

What is E(x1,y1) at a distance z from the plane of the aperture?
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much smaller than this one.

x1

Aperture
transmission
t(x,y)

y1
Observation
plane

E(x1,y1)
z

2 2 2

1 1( ) ( )r x x y y z= ! + ! + P1

P



Diffraction Assumptions

The best assumptions were
determined by Kirchhoff:

1)  Maxwell's equations

2)  Inside the aperture, the field and its spatial derivative are the
     same as if the screen were not present.

3)  Outside the aperture (in the shadow of the screen), the field
     and its spatial derivative are zero.

While these assumptions give the best results, they actually
over-determine the problem and can be shown to yield zero field
everywhere!  Nevertheless, we still use them.
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Diffraction Solution
The field in the observation plane, E(x1,y1), at a distance z from the
aperture plane is given by a convolution:
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A very complicated result!
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Huygens’ Principle

Our solution for diffraction illustrates this idea, and it’s more rigorous.

Christiaan Huygens
1629 – 1695

Huygens’
Principle says
that every
point along a
wave-front
emits a
spherical wave
that interferes
with all others.



Fresnel Diffraction:  Approximations
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In the denominator, we can approximate r by z. But we can’t approxi-
mate r in the exp by z because it gets multiplied by k, which is big, so
relatively small changes in r can make a big difference!  But we can
write:
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Fresnel Diffraction:  Approximations

Multiplying out the squares:
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This is the Fresnel integral.

It yields the light wave field at the distance z from the screen.

Factoring out the quantities independent of x and y:
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Diffraction Conventions

We’ll typically assume that a plane wave is incident on the aperture.

( , )E x y constant=

And we’ll usually ignore the various factors in front:
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It still has an exp[i(ω t – k z)], but it’s
constant with respect to x and y.



Fresnel diffraction:  example

Fresnel diffraction from a single slit:

Far
from

the
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zClose
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Incident
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Slit



Fresnel Diffraction from a Slit

This irradiance vs. position just after a slit illuminated by a laser.
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The Spot of Arago
If a beam encounters a stop, it develops a hole, which fills in as it
propagates and diffracts:

This irradiance can be quite high and can do some damage!

Interestingly,
the hole fills
in from the
center first!

x x1

Stop

Beam after
some distance

Input beam
with hole



Fresnel diffraction from an array of slits:
The Talbot Effect

One of the few Fresnel diffraction problems that can be solved
analytically is an array of slits.

The beam pattern alternates between two different fringe patterns.

ZT = 2d2/λ

Screen with
array of slits

Diffraction
patterns



The Talbot
Carpet

What goes on in
between the solvable
planes?

The slits are here.

The beam
propagates in this
direction.



Diffraction
Approximated

Such effects can be
modeled by measuring the
distance on a Cornu Spiral.

But most useful diffraction effects do not occur in the Fresnel
diffraction regime because it’s too complex.
For a cool Java applet that computes Fresnel diffraction patterns, try
http://falstad.com/diffraction/

These integrals come up:

C(x)

S(x)

x
x



Fraunhofer Diffraction: The Far Field
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Let D be the size of the aperture:  D2 ≥ x2 + y2.
When kD2/2z << 1, the quadratic terms << 1, so we can neglect them:
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Recall the Fresnel diffraction result:

This condition means going a distance away: z >> kD2/2 = πD2/λ
If D = 1 mm and λ = 1 micron, then z >> 3 m.
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Fraunhofer Diffraction Conventions
Neglect the phase factors, and we’ll explicitly write the
aperture transmission function, t(x,y), in the integral:
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This is just a Fourier Transform!

Interestingly, it’s a Fourier Transform from position, x, to another
position variable, x1 (in another plane). Usually, the Fourier “conjugate
variables” have reciprocal units (e.g., t & ω, or x & k). The conjugate
variables here are really x and kx = kx1/z, which have reciprocal units.

So the far-field light field is the Fourier Transform of the transmitted
field!

E(x,y) = constant if a plane wave



The Fraunhofer Diffraction formula

that is:
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Aperture transmission function

We can write this result in terms of the off-axis k-vector components:

kx = kx1/z  and  ky = ky1/z

( ) { }, ( , ) ( , )x yE k k t x y E x y! F

kz

ky

kx

θx = kx /k = x1/z  and θy = ky /k = y1/z

and:

or:



The Uncertainty Principle in Diffraction!

Because the diffraction pattern is the Fourier transform of the slit,
there’s an uncertainty principle between the slit width and diffraction
pattern width!

If the input field is a plane wave and Δx is the slit width and Δkx is the
proportional to the beam angular width after the screen,
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Or:

The smaller the slit, the larger the diffraction angle and the bigger
the diffraction pattern!



Fraunhofer Diffraction from a slit
Fraunhofer Diffraction from a slit is simply the Fourier Transform of a
rect function, which is a sinc function.  The irradiance is then sinc2.
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Fraunhofer
Diffraction from a
Square Aperture

The diffracted field is a
sinc function in both x1
and y1 because the
Fourier transform of a
rect function is sinc.

Diffracted
irradiance

Diffracted
field



Diffraction from a
Circular Aperture

Diffracted Irradiance

A circular aperture yields a
diffracted "Airy Pattern,"
which looks a lot like a
sinc function, but actually
involves a Bessel function.

Diffracted field



Diffraction from
small and large
circular
apertures

Recall the Scale Theorem!
This is the Uncertainty
Principle for diffraction.

Far-field
intensity pattern

from a small
aperture

Far-field
intensity

pattern from a
large aperture



Fraunhofer diffraction
from two slits

t(x) = rect[(x+a)/w] + rect[(x−a)/w]

( ) { ( )}
x

E k t x!F

1 1

1 1

sinc[ ( / ) / 2]exp[ ( / )]

sinc[ ( / ) / 2]exp[ ( / )]

w kx z ia kx z

w kx z ia kx z

! + +

"

1 1 1( ) sinc( / 2 ) cos( / )E x wkx z akx z!
kx1/z

0 xa-a

w wt(x)



Diffraction from one- and two-slit screens

Fraunhofer diffraction patterns

One slit

Two slits



Diffraction from
multiple slits

  Slit       Diffraction
Pattern         Pattern

Infinitely many equally
spaced slits (a Shah
function!) yields a far-field
pattern that’s the Fourier
transform, that is, the
Shah function.



Two Slits and Spatial Coherence
If the spatial coherence length is less
than the slit separation, then the
relative phase of the light transmitted
through each slit will vary randomly,
washing out the fine-scale fringes, and
a one-slit pattern will be observed.

Fraunhofer diffraction patterns

Good spatial
coherence

Poor spatial
coherence



Young’s Two Slit Experiment and
Quantum Mechanics
Imagine using a beam so weak that only one photon passes through
the screen at a time. In this case, the photon would seem to pass
through only one slit at a time, yielding a one-slit pattern.
Which pattern occurs?

Possible Fraunhofer diffraction patterns

Each photon
passes

through only
one slit

Each photon
passes
through

both slits



Dimming the light incident on two slits

Dimming the light in a two-slit experiment yields single photons
at the screen.  Since photons are particles, it would seem that
each can only go through one slit, so then their pattern should
become the single-slit pattern.

Each individual
photon goes
through both
slits!


